Phasic ion channel blockade. A kinetic model and parameter estimation procedure.

نویسندگان

  • C F Starmer
  • A O Grant
چکیده

For excitable membranes, use and frequency dependence represent a progressive incorporation of drug into gated ion channels with repetitive stimulation. In contrast to receptors where access to ligand is continuous in time, we define guarded receptors, such as gated ion channels, as receptors whose access to the ligand pool is transient and controlled by the channel-gating process. During repetitive stimulation, the fraction of ligand-bound channels (ion channel blockade) follows an exponential time course, determined by the interstimulus interval, channel-gating processes, drug concentration, and the forward and reverse rate coefficients characteristic of the binding process. Based on a first order model of ligand-receptor binding, we derive a characterization of ion channel blockade via a single diffusion path under conditions of repetitive phasic stimulation. Extension to multiple diffusion paths and multiple drugs leads to a more complex scheme, but these generalizations are straightforward. For the case of one diffusion path, we derive the steady state level of channel blockade for guarded receptors as a function of stimulus rate and develop a data analysis strategy suitable for characterizing ion channel-blocking agents such as local anesthetics and antiarrhythmic drugs. We show that as receptor access time increases, the transient and steady state properties of guarded receptors become equivalent to those derived from the standard continuous access ligand-receptor model. The analysis tools presented simplify the quantitative description of the functional properties of many ion channel blockers and appear to have general applicability to characterization of periodically accessible receptors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Markov models for ion channels: versatility versus identifiability and speed.

Markov models (MMs) represent a generalization of Hodgkin-Huxley models. They provide a versatile structure for modelling single channel data, gating currents, state-dependent drug interaction data, exchanger and pump dynamics, etc. This paper uses examples from cardiac electrophysiology to discuss aspects related to parameter estimation. (i) Parameter unidentifiability (found in 9 out of 13 of...

متن کامل

Simulation study of the transport properties of ions through ion channels serving as primary components of a nanobiosensor

Ion channels are naturally occurring pores through the proteins that regulate the passage of ions and thus maintain the concentration of ions inside and outside the cell. The ion channels control many physiological functions and they can show selectivity for a specific ion. Ion channels are mostly observed in nerve cells and muscle cells. The influx of ions into cells can be regulated by a gate...

متن کامل

Poisson sampling-based inference for single ion channel data with time interval omission.

Patch-clamp recording allows investigations of the gating kinetics of single ion channels. Statistical analysis of kinetic data can enhance our understanding of channel gating at a molecular level. Experimental channel records suffer from time interval omission, i.e. failure to detect brief channel openings and closings. It is important to incorporate this phenomenon into statistical analyses o...

متن کامل

MCMC for Ion-Channel Sojourn-Time Data: A Good Proposal.

Stochastic modeling of ion-channels has come a long way since the patchclamp technique enabled the current flowing through a single channel to be recorded. But a kinetic model is only as good as the reliability of its rate constants, and obtaining good estimates of parameter uncertainty remains challenging. The article by Epstein et al. (1) in this issue of the Biophysical Journal presents an e...

متن کامل

Simulation study of the transport properties of ions through ion channels serving as primary components of a nanobiosensor

Ion channels are naturally occurring pores through the proteins that regulate the passage of ions and thus maintain the concentration of ions inside and outside the cell. The ion channels control many physiological functions and they can show selectivity for a specific ion. Ion channels are mostly observed in nerve cells and muscle cells. The influx of ions into cells can be regulated by a gate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular pharmacology

دوره 28 4  شماره 

صفحات  -

تاریخ انتشار 1985